

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

PyCharles

A Genetic-Model library in Python 3.x.

This library is based on the original Charles library in Scala [https://github.com/shakedzy/charles].

[image: _images/3398.jpg]Charles Darwin

Charles Darwin, 1809-1882

Some reading and examples:

	Genetic Algorithms on Wikipedia [https://en.wikipedia.org/wiki/Genetic_algorithm]

	This blog post [https://burakkanber.com/blog/machine-learning-genetic-algorithms-part-1-javascript/] with a simple tutorial and an example

	This video [https://www.mathworks.com/videos/what-is-a-genetic-algorithm-100904.html] by MathWorks

Installation:

Clone this repository to your local machine and run pip:

pip install git+https://github.com/shakedzy/pycharles.git

Usage:

Quick start:

from pycharles import Model
model = Model(population, all_values, strength_function, offspring_function)
model.evolve()
solution = model.get_best()

Basic parameters:

	population: The population which needs to evolve. Each subject (or element) in the
population is represented as a sequence of values

	all_values: All the possible values (genes) allowed in each subject of the population. This can either
be a list, in which case all values are drawn from the same pool, or a dict, where the keys are integers
representing the indices of the values of the subject, and the values are lists representing the unique
pools for each index.

	strength_function: A function that accepts a subject of the population and determines
its strength, in the range of [0, inf], the higher the strength is, the closer the subject is to the
desired state

More configurations:

	offspring_function: Can be either a string or a function that accepts two subjects (parents)
and outputs two subjects (offspring). If a string, must be either ‘slice_and_stitch’ or ‘parents_similarity’.
This will use the functions with the same name which are found in the offspring_functions module (see below).If the supplied value is a function, It must be af unctions that accepts only two subjects and returns a tuple of
two subjects. Default: ‘slice_and_stitch’

	elitism_ratio: Must be in the range of [0,1]. Determines the percentage of elitists in each
iteration. Elitists are the strongest subject in their generation, and therefore survive and advance
untouched to the next generation. Default value: 0.1

	mutations_odds: Must be in the range of [0,1]. Determines the probability for mutation of
the subjects in each generation. A mutation is a single binary bit in the subject’s genes being randomly
flipped. Default value: 0.001

	generations: Must be a positive integer. The number of iterations the model should run through
before stopping. Default value: 10

	early_stop: Must be a positive integer or None (0 is the same as None). When not None, The model
will stop if a better solution was not found after the amount of generations specified. Default: None

	duplication_policy: The policy of the model regarding duplicates in the population at the end of
each generation. Options are: (1) ignore, ignore the duplications, (2) kill, leave only one copy of
each duplicated value. This shrinks the size of the population, (3) replace, similar to kill, only
the model will let the population breed again in order to fill the missing values. If any duplications occur
after this process, the model will repeat this process until all values are unique or up to 3 attempts, after
which the model will ignore duplications and proceed. To change the maximum attempts the model will make to
replace duplications, use replace:X, where X is the desired number. Default: ignore

	mutate_elitists: Boolean. Set if elitists can mutate when transferring from one generation to
the next one. When False, this ensures that the top solutions will be remain unchanged. When True, this
allows the model to explore more solutions. Default: False

	seed: A seed to be supplied to the model’s pseudo-random number generator. Default value:
system time (int(time.time()))

	verbose: Boolean. Set verbosity level. Default: False

Offspring functions:

The offspring_functions module contains two basics offspring functions which create two new subjects out of
two existing subjects. Both functions use the all_values parameter required by the model to convert the
subjects to binary encoding. They then apply some logic on the binary sequence, and then decode it back to the
newly created subjects.

Each function also has an extension with the _func prefix, which takes only all_values parameter
and return a partial function of the function itself. These extensions are the ones used by the model.

	slice_and_stitch: This function chooses a location along the binary sequences, slices both sequences at that
location and replaces the second halves. For example, if the two subjects are 000000 and 111111 are being
slices in the middle, the result will ve 000111 and 111000.

	parents_similarity: This function creates two new subjects by comparing the bits of the binary sequences of the
provided subjects (the parents). If both parents have the same bit in a certain location, the offspring have a very
high probability of having the same bit too in that location. If the parents’ bits are opposite, than the offspring’s
bits are chosen randomly. For example, say the parents are s1 = 11000 and s2 = 11101, then with high probability
the offspring will be s1_new = 11100 and s2_new = 11001 (the middle and last digit are randomly chosen)

Examples:

Examples are found in the project’s test directory, in the examples module.

Reach 42:

Each subject in the population is a mathematical equation, made of four integers from 0 to 9 and three
operators from [+,-,*,/]. Each subject is represented as sequence of single-character strings of either
a digit or an operator. The model’s objective is to find a set of digits and characters which will
yield 42. The Strength Function is defined as the absolute value of the result of 1/(x-42).

Related blogposts:

Read about a comparison I performed between genetic models and random sampling using this library on “Are Genetic Models Better Than Random Sampling? [https://medium.com/@shakedzy/are-genetic-models-better-than-random-sampling-8c678002d392]”

License:

Apache License 2.0

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/3398.jpg

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

